智能天线基站的客户端模拟实现
以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用.
密 惠 保
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用.
密 惠 保
资料介绍:
智能天线原名自适应天线阵列(AAA,Adaptive
Antenna Array),最初应用于雷达、声纳、军事方面,主要用来完成空间滤波和定位,大家熟悉的相控阵雷达就是一种较简单的自适应天线阵。移动通信研究人员给应用于移动通信的自适应天线阵起了一个较吸引人的名字:智能无线,英文名为smart antenna或Intelligent antenna。
1.基本结构
顾名思义自适应天线阵由多个天线单元组成,每一个天线后接一个加权器(即乘以某一个系数,这个系数通常是复数,既调节幅度又调节相位,而在相控阵雷达中只有相位可调),最后用相加器进行合并,这种结构的智能天线只能完成空域处理;同时具有空域、时域处理能力的智能天线在结构上相对复杂些,每个天线后接的是一个延时抽头加权网(结构上与时城FIR均衡器相同)。自适应或智能的主要含义是指这些加权系数可以恰当改变和自适应调整。上面介绍的是智能天线用作接收天线时的结构,当用它进行发射时结构稍有变化,加权器或加权网络置于天线之前,也没有相加合并器。
2.工作原理
假设满足天线传输窄带条件,即某一入射信号在各天线单元的响应输出只有相位差异而没有幅度变化,这些相位差异由入射信号到达各天线所走路线的长度差决定。若入射信号为平面波(只有一个入射方向),则这些相位差由载波波长、入射角度、天线位置分布唯一确定。给出一组加权值,一定的入射信号强度,不同入射角度的信号由于在天线间的相位差不同,合并器后的输出信号强度也会不同。
以入射角为横坐标对应的智能无线输出增益(dB)为纵坐标所作的图被称为方向图(天线术语),智能天线的方向图不同于全向(omni)天线(理想时为一直线),而更接近方向(directional)天线的方向图,即有主瓣(main lobe)、副瓣(side lobe)等,但相比而言智能天线通常有较窄的主瓣,较灵活的主,副瓣大小、位置关系,和较大的天线增益(天线术语,天线的一项重要指标,是最强大向的增益与各方向平均增益之比),另外和固定天线的最大区别是:不同的权值通常对应不同的方向图,我们可以通过改变权值来选择合适的方向图。即天线模式(antenna Pattern)。
3用途
移动通信信道传输环境较恶劣,多径衰落、时延扩展造成的符号间串扰ISI(Inter-Symbol Interference)、FDMA/TDMA系统(如GSM)由于频率复用引入的同信道干扰(CCI,Co-Channel Interference)、CDMA系统中的MAI(Multiple
Access Interference)等都使链路性能、系统容量下降,我们熟知的均衡、匹配滤波、RAKE接收,信道编译码技术等都是为了对抗或者减小它们的影响。这些技术实际利用的都是时、频域信息。而实际上有用信号的时延样本(delay version)和干扰信号在时、频域存在差异的同时,在空域(入射角DOA,Direction of
Arrival)也存在差异,分集天线(antenna
diversity),特别是扇形天线(sector
antenna)可看作是对这部分资源的初步利用,而要更充分地利用它只有采用智能天线技术。
智能天线是一种伸缩性较好的技术。在移动通信发展的早期,运营商为节约投资,总是希望用尽可能少的基站覆盖尽可能大的区域,这就意味着用户的信号在到达BTS(基站收发信设备)前可能经历了较长的传播路径,有较大的路径损耗(path loss),为使接收到的有用信号不至于低于门限,要么增加移动台的发射功率、要么增加基站天线的接收增益,由于移动台(特别是手机〕的发射功率通常是有限的,真正可行的是增加天线增益,相对而言用智能无线实现较大增益比用单天线容易。
在移动通信发展中为扩大系统容量、支持更多用户,需要收缩小区范围、降低频率复用系数提高频率利用率,通常采用的方法是小区分裂和扇区化,随之而来的是干扰增加,原来被距离(其实是借助路径损耗)有效降低的CCI和MAI较大比例地增加了。但利用智能天线,借助有用信号和干扰信号在入射角度上的差异,选择恰当的合并权值,形成正确的天线接收模式,即将主瓣对准有用信号,低增益副瓣对准主要的干扰信号,从而可更有效地抑制干扰,更大比例地降低频率复用因子(比如在GSM中使复用因子3成为可能)和同时支持更多用户(CDMA中)。从某种角度我们可将智能天线看作是更灵活、主瓣更窄的扇形天线。
智能天线的又一个好处是可减小多径效应,CDMA中利用RAKE接收机可对时延差大于一个码片的多径进行分离和相干合并,而借助智能天线可以对时延不可分但角度可分的多径进行进一步分离,从而更有效减小多径效应。
采用智能天线技术的主要目的是为了更有效地改进移动通信信道,而时分,码分多址系统的信道传输环境从本质上讲是一样的,所以除了具体算法上的差异外,智能天线可广泛应用干各种时分、码分多址系统包括已商用的第二代系统。
智能天线另一个可能的用途是进行紧急呼叫定位,并提供更高的定位精度,因为在获得可用于定位的时延、强度等信息的同时它还可获得波达角信息。
模块实现
智能天线模拟系统包括两个部分,PC端监控程序(Host Monitor)和天线设备模拟程序(Device Simulator)。
PC端监控程序负责监控所有连接设备,实时显示模拟天线的状况,包括天线的接入接出,多个天线的识别,天线位置显示等。模拟天线基站的状况。
天线设备模拟程序则模拟出智能天线所有可能的行为,回报基站自己的状况。
这两个独立的程序透过串口传输数据,即以串口的方式来模拟信息在空气中传播。
Host Monitor程序包括GUI模块、串口通讯模块、数据通讯协议三个部分,而Device Simulator只需包括串口通讯和数据通讯协议两个部分。我们合并起来一起讨论。
上一篇:医院门诊信息管理信息系统