单片机实现神经网络
以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用.
密 惠 保
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用.
密 惠 保
资料介绍:
霍普菲尔德神经网络历史
1982年,J.Hopfield提出了可用作联想存储器的互连网络,这个网络称为Hopfield网络模型,也称Hopfield模型。Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。Hopfield网络有离散型和连续型两种。
反馈神经网络由于其输出端有反馈到其输入端;所以,Hopfield网络在输入的激励下,会产生不断的状态变化。当有输入之后,可以求取出Hopfield的输出,这个输出反馈到输入从而产生新的输出,这个反馈过程一直进行下去。如果Hopfield网络是一个能收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦到达了稳定平衡状态;那么Hopfield网络就会输出一个稳定的恒值。对于一个Hopfield网络来说,关键是在于确定它在稳定条件下的权系数。
应该指出:反馈网络有稳定的,也有不稳定的。对于Hopfield网络来说,还存在如何判别它是稳定网络,亦或是不稳定的问题;而判别依据是什么,也是需要确定的。
1.2 Hopfiled神经网络的基本结构
1.2.1 离散Hopfield网络
Hopfield最早提出的网络是二值神经网络,神经元的输出只取1和0这两个值,所以,也称离散Hopfield神经网络。在离散Hopfield网络中,所采用的神经元是二值神经元;故而,所输出的离散值1和0分别表示神经元处于激活和抑制状态。
首先考虑由三个神经元组成的离散Hopfield神经网络,其结构如图1—1中所示。在图中,第0层仅仅是作为网络的输人,它不是实际神经元,所以无计算功能;而第一层是实际神经元,故而执行对输人信息和权系数乘积求累加和,并由非线性函数f处理后产生输出信息。f是一个简单的阀值函效,如果神经元的输出信息大于阀值θ,那么,神经元的输出就取值为1;小于阀值θ,则神经元的输出就取值为θ。